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Abstract
Economic theory identifies two potential sources of return pre-

dictability: time variation in expected returns (beta-predictability)
or market inefficiencies (alpha-predictability). For the latter, Samuel-
son argued that macro-returns exhibit more inefficiencies than micro-
returns, as individual stories are averaged out, leaving only harder-to-
eliminate macro-mispricing at the index-level. To evaluate this claim,
we compare macro- and micro-predictability on US data to gauge if
the former turns out higher than the latter. Additionally, we extend
over time the methodology of Rapach et al. (2011) to disentangle the
two sources of predictability. We first find that Samuelson’s view ap-
pears incorrect, as micro-predictability is not structurally lower than
macro-predictability. Second, we find that our estimated alpha- and
beta-predictability indices are coherent with their corresponding the-
oretical implications, thus suggesting that the two mechanisms are at
play in our dataset. Notably, the alpha-predictability index appears
as a theoretically based and easily updatable metric to spot irrational
exuberance.
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1 Introduction

Some forms of the Efficient Market Hypothesis (EMH) imply that stock returns are not

predictable (Fama (1970), Pesaran (2010)). Since all available information is already

embedded in asset prices, changes in the latter can only be caused by the arrival of new

information which is by definition unpredictable. In other words, prices should follow a

random walk, and running a regression of future returns, rt+1, on past information, Xt,

should not yield predictive content.

At the same time, stock market efficiency may differ between a macro-perspective and a

micro-perspective. Paul Samuelson argued in this sense (Jung and Shiller (2005)):

Modern markets show considerable micro efficiency (for the reason that the

minority who spot aberrations from micro efficiency can make money from

those occurrences). [...] In no contradiction to the previous sentence, I had

hypothesized considerable macro inefficiency, in the sense of long waves in

the time series of aggregate indexes of security prices below and above various

definitions of fundamental values.

Samuelson’s intuition amounts to a model where micro-returns are driven both by an

idiosyncratic efficient component and by a common inefficient component (as micro-

inefficiencies are arbitraged away by investors). If these idiosyncratic factors are inde-

pendently distributed, they will average out in the aggregate, leaving at the index-level

only the inefficient component of returns. Consequently, if stock return predictability is

a gauge of inefficiency, and if Samuelson’s view is correct, then we should observe higher

levels of predictability at the macro- than at the micro-level.

The contribution of this paper is twofold. First, we compare, over time, macro- and

micro-series of return predictability. Although the literature on this subject is enormous,

to our knowledge we are the first ones to conduct this exercise in a time-varying manner.
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Allowing time variation in our results matters, as return predictability appears largely to

be a regime-dependent phenomenon (Henkel et al. (2011), Farmer et al. (2021)). Second,

based on Rapach et al. (2011), we contribute to the literature aiming at identifying

the drivers of return predictability by building a new indicator that is, theoretically,

directly linked with market inefficiencies: the alpha-predictability index. On the result

side, we first show that, contrary to Samuelson’s view, aggregate returns do not exhibit

higher levels of predictability compared to micro-returns. Second, we document that,

as expected, our alpha-predictability index is positively linked with metrics of market

effervescence.

However, more precisely, modern views of the EMH underline that a certain extent of

return predictability can persist even in an efficient market setting. The aforementioned

no-predictability paradigm implied that stock prices followed a random walk, and that

expected returns were constant. On the contrary, Cochrane (2008) argues that, as

investors’ risk aversion varies over time, expected returns vary as well. Taking into

account time variation in expected returns along the business cycle can therefore generate

return predictability even in the absence of market inefficiencies.

To put it bluntly, in the midst of an economic crisis, investors become highly risk averse.

This leads to a decline in stock prices and to an increase in expected returns. People

could therefore predict that returns will be high in the future, but they are too concerned

about their current situation to benefit from it. In the same strand of the literature,

empirical papers also argued that this mechanism should be especially at play during

economic downturns (Henkel et al. (2011), Dangl and Halling (2012), Rapach et al.

(2010)).

Therefore, the interpretation of predictability time series is sensitive. High level of

predictability can reflect market inefficiencies such as investors’ irrationality or market

frictions. But it can also mirror efficient variations in aggregate risk aversion. Conse-
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quently, in order to clarify our framework, we present three hypotheses that summarise

the different views on return predictability

In the first hypothesis, linked with the Samuelson’s view, macro-predictability should be

higher than micro-predictability, especially in times of irrational exuberance (e.g. during

the dot-com bubble). The second hypothesis, in line with Cochrane’s view, states that

micro- and macro-predictability should not behave differently as they are influenced by

the same factor: changes in aggregate risk aversion. They should therefore evolve in

tandem and be higher during recessions. A third “in-between” hypothesis assumes that

returns at the micro-level are driven by idiosyncratic factors that can be either efficient

(e.g. news about cash flows) or inefficient (e.g. illiquidity issues). The former decrease

micro-predictability, whereas the latter increase it. At the aggregate level, both types

of individual factors are averaged out, so that micro-predictability can either be higher

or lower than macro-predictability. Eventually, this third view is agnostic regarding the

sources of macro-predictability, which can therefore be high both during recessions and

during market effervescence periods.

We test the three different hypotheses on US post-war data, with an out-of-sample

methodology that combines 23 models estimated on rolling windows. These models are

commonly used in the return predictability literature and encompass both traditional

econometric methods, factor modelling approaches and Machine Learning techniques.

The large number of approaches considered here reflects the substantial model instability

in forecasting returns exercises (Timmermann (2018)).

We find overall that our results corroborate the third hypothesis for at least two rea-

sons. First micro-predictability is neither structurally higher nor lower than macro-

predictability. On the contrary, micro-predictability “bounces around” macro-predictability.

This result is in line with a model where micro-predictability level depends on the relative

importance of efficient or inefficient idiosyncratic component of returns. Second, we ex-
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tend the methodology of Rapach et al. (2011) in a time-varying manner so as to disentan-

gle the sources of macro-predictability. The two resulting series, the alpha-predictability

and the beta-predictability indices, should track changes in macro-predictability due

to market inefficiencies and due to time-varying risk aversion, respectively. In accord

with the third hypothesis, we find that the alpha-predictability index is positively associ-

ated with metrics of market exuberance, whereas the beta-predictability index correlates

with business cycle variables. This finding underlines that the two sources of return pre-

dictability are at play in our dataset, and therefore enables to reconcile the diverging

views in the literature about the drivers of return predictability. Furthermore, from a

policy perspective, the alpha-predictability index can also be used as an indicator in the

financial stability toolkit to spot speculative bubbles. Along with other methodologies

(Blot et al. (2018), Shiller et al. (2020)) it constitutes an easily updatable risk metric to

gauge stock market irrational exuberance.

The rest of the paper is structured as follows: Section 2 details how the current paper is

located in the return predictability literature, Section 3 describes the three theoretical

hypotheses outlined above, Section 4 presents the methodology and the datasets used,

Section 5 reports the empirical results, Section 6 provides different robustness checks

and Section 7 concludes.

2 Return Predictability in the Literature

The literature on stock return predictability is extensive and has considerably evolved

over time. Seminal papers focused on aggregate stock returns, most of the time reporting

in-sample results within linear regression approaches. Various macro-financial variables

appeared to have some predictive power, such as the dividend yield (Fama and French

(1988), Campbell and Shiller (1988)), the term structure of interest rates (Campbell

(1987)) or the consumption-wealth ratio (Lettau and Ludvigson (2001)). Nevertheless,
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in sharp contrast with the previous studies, Welch and Goyal (2008) underline that the

former results are hardly replicable. In a linear setting, return predictability appears as

a spurious result, both in-sample and out-of-sample.

However, relying on more sophisticated techniques, subsequent papers claim to forecast

future returns, although most of the time with relatively low R2. These innovative ap-

proaches fall mainly in three non-exclusive categories.

First, return prediction is a specific forecasting exercise in itself, as the use of a perform-

ing model by investors is likely to erase the predictability pattern the model is based upon

(Timmermann (2018)). The resultant instability in the predicting relationship paved the

way for forecast averaging techniques, since they enable the econometrician not to rely

on the assumptions of a single model. This includes notably simple and advanced fore-

cast combination methods (Aiolfi and Timmermann (2006), Rapach et al. (2010), Elliott

et al. (2013), Baetje (2018)) or Bayesian Model Averaging (Dangl and Halling (2012)).

Second, in line with other financial market variables, stocks returns are mostly influ-

enced by investors’ expectations. These expectations constitute an unobserved variable,

but can be included in the predictive model as a latent factor. Consequently, theory-

driven approaches in the form of factor models have proven to perform relatively well at

different frequencies (Binsbergen and Koijen (2010), Kelly and Pruitt (2013)). Third,

given the complex structure of financial markets, it is unlikely that stock returns follow

a linear process. As a result, different studies have explicitly investigated non-linear

forecasting techniques. This comprises restricted linear models (Campbell and Thomp-

son (2008)), nonlinear VARs (Henkel et al. (2011)), non-parametric approaches (Farmer

et al. (2021)), or Machine Learning methodologies (Rapach et al. (2019), Chinco et al.

(2019)).

Although all these analyses have exposed in-sample or out-of-sample forecastability, de-

bate remains about the drivers of return predictability over time. Some papers underline
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that, in line with Cochrane’s view, predictability is a countercyclical phenomenon and

is therefore elevated during economic downturns (Rapach et al. (2010), Henkel et al.

(2011), Dangl and Halling (2012)). On the contrary, other studies argued that returns

are especially predictable in bullish financial markets (Farmer et al. (2021)), while other

identified specific periods of return predictability (e.g. surrounding the oil price shock

of 1973, Welch and Goyal (2008), Timmermann (2008)).

Yet, return predictability is not the only available metric to gauge market inefficiencies.

One intuitive way to do so is to estimate the informative content of stock prices (Bai

et al. (2016)). In other words, are current prices useful to predict future cash flows?

This recent work echoes older literature that evaluated to what extent stock returns

were driven by future cash flows or by future returns (Campbell (1991), Campbell and

Ammer (1993)). Another method amounts to estimate a fundamental value for stock

prices, and to define market inefficiency as the departure of observed prices from this

estimate (Lee et al. (1999)).

Most of these metrics of inefficiency are based on aggregate data. However some pa-

pers extended the above methodologies for individual stocks or for subgroups of stocks

(Vuolteenaho (2002), Cohen et al. (2003), Dávila and Parlatore (2018)), sometimes with

indicators that evolve over time (Farboodi et al. (2020)). Similarly, some studies eval-

uate return forecastability at the stock-level, but without reporting specifically micro-

predictability (Avramov and Chordia (2006)), without time variation in the results (Ra-

pach et al. (2011)) or without drawing a proper micro-macro analysis (Guidolin et al.

(2013), Chinco et al. (2019)).

Compared to the aforementioned studies, the goal of the present paper is to compare,

over time, macro- and micro-predictability so as to extract from this analysis a metric

of market inefficiencies. This question has, to our knowledge, never been addressed in

the literature.
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There are indeed many reasons to presume that stock markets behave differently at

the stock-level compared to the index-level. As stated before, Samuelson postulated

that micro-efficient cash flow news were averaged out in the aggregate, leaving at the

index-level merely the inefficient part of returns (Jung and Shiller (2005)). Effectively,

some empirical papers underlined contrasting behaviours of micro-returns compared to

macro-returns. Sadka and Sadka (2009) document that the positive relationship be-

tween earning growth and returns at the micro-level turns negative at the macro-level.

Kothari et al. (2006) report similar findings between earning surprises and contempora-

neous returns. Eventually, Hirshleifer et al. (2009) stress that elevated accruals predict

negative future returns at the stock-level, but null or positive future returns at the index

level. All these studies share a similar reasoning: cash flows are mainly idiosyncratic,

whereas discount rates are common across firms. As such, drivers of stock returns may

differ greatly depending on the scale we are considering. Allegedly, these drivers are

more associated with expectations about future profitability at the micro-level, but, due

to diversification effects, depend more on discount rate factors (such as investors’ risk

aversion) at the macro-level.

3 Working Hypotheses

We formalize in this section the three hypotheses outlined above. Following Avramov

(2004) and Rapach et al. (2010) we express (excess) aggregate returns as:

rt+1 = α(Xt) + β′tft+1 + εt+1 (1)

Where α(Xt) represent the inefficient part of returns, ft+1 a vector of portfolio-based

factors capturing systematic risk, βt the corresponding vector of factor loadings and εt+1

a disturbance term of mean zero.
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Two sources of return predictability are potentially at play here. With time t variables,

the econometrician is able to predict market inefficiencies α(Xt). Additionally, return

predictability can emerge from the forecastability of risk factors if we further assume

that they evolve likewise:

ft+1 = g(Xt) + ut+1 (2)

Where g(Xt) is a vector of (forecastable) conditional expected returns for the risk factors

and ut+1 a vector of mean-zero disturbance terms independent of εt+1.

Besides, we consider that micro-returns ri,t+1 are affected by aggregate factors α(Xt) and

εt+1, but also by their individual counterparts: αi(Xt) and εi,t+1 (that is, idiosyncratic

inefficiencies and idiosyncratic unpredictable shocks). We assume that αi(Xt) and εi,t+1

are centered around 0, and are diversified away at the macro-level. More precisely we

write our system of macro- and micro-returns such as:


ri,t+1 = αi(Xt) + ωiα(Xt) + β′i,tft+1 + εi,t+1 + δiεt+1

rt+1 = α(Xt) + β′tft+1 + εt+1

ft+1 = g(Xt) + ut+1

(3)

With ωi and δi the exposures of ri,t+1 to the common factors α(Xt) and εt+1, respectively,

and with εi,t+1 being independent from εt+1 and from ut+1. The system of equations 3

constitutes the basis for the three following hypotheses.

3.1 H1, Samuelson’s view

Our first hypothesis is built upon Samuelson’s intuition and entails several implica-

tions.

First, we consider here that αi(Xt) = 0 given that, in line with Samuelson, arbitrageurs
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should eradicate micro-mispricings. Second, at the time where Samuelson expressed

this idea, the theory of return predictability driven by time-varying expected returns

was not formulated yet. Some studies even modelled expected returns as a constant

(Samuelson (1975)). We therefore suppose here that g(Xt) = c, with c a constant

vector, so that ft+1 = c+ ut+1. Third, as micro-inefficiencies are arbitraged away, and

since the efficient idiosyncratic news are averaged out in the aggregate, it is assumed here

that micro-returns are more driven by unpredictable components than macro-returns.

Consequently, return predictability should be higher in the aggregate than at the micro-

level1. Fourth, the common predictable factor α(Xt) should especially be forecastable

in times of elevated market inefficiency.

The System 3 can therefore be rewritten for H1 as:


ri,t+1 = ωiα(Xt) + β′i,tft+1 + εi,t+1 + δiεt+1

rt+1 = α(Xt) + β′tft+1 + εt+1

ft+1 = c+ ut+1

(4)

For illustrative purposes, we highlight in the top panel of Figure 1 how predictability

should behave according to H1. In that setting, return predictability only comes from

the inefficient component of returns, α(Xt). As α(Xt) is mixed with unpredictable news

(εi,t+1) at the stock-level, micro-predictability (in blue) should be lower than macro-

predictability (in red). Additionally, we consider here that markets are inefficient in

times of irrational exuberance (Shiller (2015)) or during downturns as the proportion

of noise traders may be especially high in recessions (Veldkamp (2005)). Accordingly,

macro-predictability should peak during the late 90s dotcom-bubble, or during the Great

1In other words, micro-returns are assumed to be essentially driven by “individual stories” (Jung and
Shiller (2005)), whereas macro-returns are more affected by aggregate inefficiencies. More formally it
would mean that the variance of the unpredictable factors of micro-returns (εi,t+1 + δiεt+1 + β′i,tut+1)
dominates the variance of the predictable part (ωiα(Xt)). This is less true for the corresponding factors
of macro-returns, respectively β′tut+1 + εt+1 and α(Xt).
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Financial Crisis of 2008 (grey bars figure NBER US recessions).

Figure 1: Hypothetical Micro- and Macro-Predictability according to the different views

On the different graphs are represented the hypothetical macro- (in red) and micro- (in blue)
predictability according to the three views outlined in Section 3. The graph is for illustrative
purposes only and is not the result of an econometric estimation. The metric used is the out-of-
sample R2, later detailed in Section 4.2, that can take negative values. The grey vertical bands
figure the NBER US recession dates.

3.2 H2, Cochrane’s view

Our second hypothesis dwells on Cochrane (2008), and assumes return predictability

in the absence of market inefficiencies. Consequently, we consider here that α(Xt) =

αi(Xt) = 0. On the reverse, return predictability stems from time variation in expected
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returns, that is from the predictability of the risk factors: ft+1 = g(Xt) + ut+1. In this

setting, expected returns vary with risk aversion along the business cycles, for instance

if investors fear to fall short on their consumption targets during downturns (Campbell

and Cochrane (1999)). If at time t, a variable like the dividend yield is able to spot

changes in contemporaneous risk aversion, and thus changes in expected returns, it can

contain predictive content for future returns2.

We then have for H2 the following system:


ri,t+1 = β′i,tft+1 + εi,t+1 + δiεt+1

rt+1 = β′tft+1 + εt+1

ft+1 = g(Xt) + ut+1

(5)

Here, micro- and macro-predictability are influenced by the same phenomenon: the

forecastability of ft+1. As such, they should evolve in similar manners, although some

differences may subsist depending on the values of βi,t and βt, and on the realizations of

εi,t+1 and εt+1. This point is illustrated by the common trend in micro- (blue lines) and

macro-predictability (red line) in the middle panel of Figure 1. Additionally, current re-

turns may especially be influenced by expected returns during downturns, since expected

returns are more volatile in recessions (Henkel et al. (2011)). Therefore, as underlined

on Figure 1, both micro- and macro-predictability should behave in a counter-cyclical

way, and rise in bad times.

3.3 H3, Third view

Eventually, between the two precedent polar cases, the third view assumes that micro-

returns can be both influenced by aggregate inefficiencies and by idiosyncratic mispricing,

e.g. localized bubbles or specific illiquidity issues.

2Note that, in that case, return predictability is not a “free lunch”, investors have to take extra-risk
to benefit from it (Kelly and Pruitt (2013)).
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Leaning back on the previous representation, predictability could therefore emerge from

“alpha”-predictability (aggregate or individual inefficiencies, αi(Xt) and α(Xt)), or from

“beta”-predictability (due to time variation in expected returns, in line with H2). If we

also assume that the αi(Xt) and εi,t+1 are diversified away at the aggregate level, H3

would yield the exact same system of equations as System 3.

This view entails several implications illustrated on the bottom panel of Figure 1. First,

depending notably on the relative importance of αi(Xt) and εi,t+1, micro-predictability

can be higher or lower than macro-predictability. Second, as these two variables are

independently distributed, we would expect the average of micro-predictability indices

across stocks to be similar to the macro-predictability series. Eventually, as macro-

predictability can increase due to aggregate inefficiencies or to time variation in expected

returns, it can both peak during speculative bubble periods or during downturns.

4 Data and Methodology

We assess the relevance of the three hypotheses with an out-of-sample methodology that

tries to encompass the major modelling approaches in the literature. Our analysis is

focused on postwar US monthly excess returns (from September 1945 to October 2020),

but can easily be extended to other datasets.

4.1 Stock Return Data

Throughout this study we investigate the predictability of excess returns, i.e. total

returns minus a risk-free rate. We extract monthly postwar US returns from Kenneth

French website. This implies that:

1. We evaluate stock return predictability over a market constituted by all CRSP

firms incorporated in the US and listed on the NYSE, AMEX, or NASDAQ. We

take a as a risk-free rate the one-month Treasury bill rate from the same source.
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2. We label “aggregate returns” the excess returns of the overall stock market, and

“individual returns” the excess returns of the 25 Fama-French portfolios formed

on Size and Book-to-Market.

Furthermore, we use supplementary variables as exogenous predictors in Section 4.2, or

as covariates in the interpretative regressions of Section 5.2. Their collections and their

constructions are more thoroughly detailed in Appendix A.2.

4.2 Constructing Raw Predictability Metrics

We present here our methodology to gauge the “raw predictability” of stock returns. We

call raw predictability our mere ability to forecast future returns compared to a bench-

mark. This estimate will then be disentangled between alpha- and beta-predictability

in Section 4.3.

As underlined in Section 2, an extensive number of models has been used in the return

predictability literature. Besides, return-forecasting suffers from an elevated model in-

stability as the popularity of performing approaches eradicates the predictive pattern

they are based upon (Timmermann (2018)). We therefore adopt here an agnostic view,

and centre our analysis on the estimation of K = 23 model types. These latter cover

classic econometric models, forecast averaging methods, factor modelling approaches and

Machine Learning tools. They are exhaustively described in Table A.1.

We evaluate return predictability with the out-of-sample R2 of Campbell and Thompson

(2008), a metric widely used in the literature (Welch and Goyal (2008)). This indicator

documents how well a model performs compared with the prevailing mean as a bench-

mark. More formally, given r̄t the prevailing mean of aggregate or individual returns

from t−L+ 1 to t, rkt+1 the forecast of rt+1 of model k based on variables running from

t− L+ 1 to t, the out-of-sample R2 for model k is defined as:
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R2
os,k,t = 1−

t−1∑
i=t−n

(ri+1 − rki+1)
2

(ri+1 − r̄i)2
(6)

In line with Timmermann (2008), we use a rolling window estimation of length L = 120

months, and an averaging period forR2
os,k,t of length n = 36 months. Our model-selection

strategy proceeds as follow:

First, given a specific series of aggregate or individual returns {rt+1}T−1t=0 , we evaluate

the different K models on a rolling window of length L. For each model m, we thus

obtain a series of out-of-sample forecast: {rmt+1}
T−1
t=L

3.

Second, again for each model k, we compute the corresponding R2
os,k,t at each point in

time from L+ n+ 1 to T .

Eventually, as in pseudo-real time strategies, we choose the model with the best aver-

age out-of-sample R2
os,k,t over the previous estimation period to perform the next-period

forecast4. We can therefore build a series of final out-of-sample predictions {rft+1}
T−1
t=L+n,

where, potentially, at each point in time a different model is chosen for the final fore-

cast. From the latter series, we can then construct our final metric of raw R2 for rt+1:

{R2
os,t}Tt=L+n+1.

4.3 Disentangling the Sources of Predictability

Following the different hypotheses outlined in Section 3, return predictability can emerge

from two different phenomenons: the exposure to predictable risk factors (ft+1) or to

market inefficiencies (α(Xt) and αi(Xt)).

For each portfolio returns ri,t+1, we compute the series of raw return predictability R2
i,os,t

3In line with Timmermann (2008), we apply a “sanity filter” to our forecasts. If a forecast exceeds
any previous return of the estimation period (in absolute value) it is then replaced with a “no change”
forecast. This type of filtering is common in the return predictability literature (Elliott et al. (2013)).

4Note that for an estimation period running from t − L + 1 to t, we need previous forecasts from
t − L − n + 2 to t − L + 1 so as to build R2

os,k,t−L+1. This latter variable will then be used in the
model-selection to predict rt+1.
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according to the methodology described in Section 4.2. In this section, to decompose this

metric between the two sources of predictability, we extend the methodology proposed

by Rapach et al. (2011).

We first build a “beta-pricing restricted” forecast of rt+1: r
β
t+1. To that aim, we define as

risk factors ft+1 the factors of the Fama-French three factor model, also extracted from

Kenneth French website. We obtain the risk factors forecasts, fft+1, with the exact same

prediction algorithm detailed in Section 4.2. Then, in line with Rapach et al. (2011), we

estimate the risk loadings β̂t by regressing, over a rolling window and without constant,

{rs}tt−L+1 on {ffs }tt−L+1. We can eventually construct:

rβt+1 = β̂′tf
f
t+1 (7)

In other words, all predictability stemming from the exposure to time varying risk factors

should be incorporated in the beta-pricing restricted forecast rβt+1. Any additional return

predictability beyond this beta-predictability reflects the fact that αi(Xt) 6= 0 or that

α(Xt) 6= 0, and is therefore called the alpha-predictability.

We can thus represent the evolution over time of the beta-predictability and the alpha-

predictability by decomposing the different R2
i,os,t. To do so, we first compute the “beta-

R2”: R2
i,β,t. This metric documents the difference in predictive ability between the

beta-pricing restricted forecast and the prevailing mean:

R2
i,β,t = 1−

t−1∑
i=t−n

(ri+1 − rβi+1)
2

(ri+1 − r̄i)2
(8)

We then gauge the performance of the unrestricted forecast (rft+1) compared to the

beta-pricing restricted forecast (rβt+1) by computing the “alpha-R2”: R2
i,α,t. This latter

assesses the extra-predictability that can be gained beyond the exposition to predictable
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risk factors:

R2
i,α,t = 1−

t−1∑
i=t−n

(ri+1 − rfi+1)
2

(ri+1 − rβt+1)
2

(9)

In line with Rapach et al. (2011), we can show that:

R2
i,os,t = R2

i,α,t +R2
i,β,t −R2

i,α,t ∗R2
i,β,t (10)

Given that levels out-of-sample R2 are particularly low in return forecasting exercises,

we can therefore omit the cross-product and write:

R2
i,os,t ∼ R2

i,α,t +R2
i,β,t (11)

In other words, looking at raw macro- and micro-predictability, R2
os,t and R2

i,os,t is helpful

to discriminate between the three different hypotheses of Section 3. But analyzing more

closely the behaviours of R2
i,α,t and R2

i,β,t enables to evaluate whether the two sources of

predictability are indeed at play in the sample5.

5 Empirical Results

This section first describes the raw predictability results over time, from both a micro-

and a macro-perspective. It then outlines the decomposition of the raw predictability

series between the alpha- and the beta-predictability, as well as the interpretation of the

latter.

5Note that R2
i,α,t is not necessarily positive. Theory-driven forecasts (such as rβt+1) may perform

better than unrestricted forecasts (here rft+1) in out-of-sample comparisons (Rapach et al. (2011)).
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5.1 Micro- and Macro- Raw Predictability

We represent on Figure 2 the raw predictability metrics for portfolio-returns (R2
i,os,t, in

blue) and for aggregate returns (R2
os,t, in red). The 25 R2

i,os,t series are also plotted

separately on Figure 6 of Appendix A.3.

Several findings emerge from Figure 2 that help to discriminate between the three hy-

potheses of Section 3. First micro-predictability is not structurally lower than macro-

predictability. This result invalidates the main assumption of H1, Samuelson’s view, that

macro-returns are more affected by market inefficiencies compared to micro-returns.

Figure 2: Micro- and Macro-Raw Predictability series, over time

On the different graphs are represented the macro- (R2
os,t, in red) and micro- (R2

i,os,t, in blue)
raw predictability indices according to the methodology outlined in Section 4.2. The metric used
is the out-of-sample R2, also detailed in Section 4.2, that can take negative values. The grey
vertical bands figure the NBER US recession dates.

Second, micro-predictability does not seem to follow the exact same behaviour as the

macro-predictability series. Although common factors are present in the micro-predictability

series (as analyzed in Section 5.2), we notice that R2
i,os,t is sometimes significantly lower
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or higher than R2
os,t. This finding contradicts H2 (Cochrane’s view) according to which

micro- and macro-predictability should behave similarly.

Eventually, two observations appear to corroborate the last hypothesis (H3, the “third

view”). First, we remark on Figure 2 that the variances of R2
i,os,t are considerably higher

than for R2
os,t. Second we plot on Figure 3 the average of the micro-predictability series

over the I different portfolios (R2
i,os,t ≡ I−1

∑
1≤i≤I R

2
i,os,t, in dark blue) along the

macro-predictability series (R2
os,t, in red).

Figure 3: Macro-Raw Predictability series and averaged Micro-Raw Predictability, over
time

On the graph are represented the macro-raw predictability (R2
os,t, in red) and the average micro-

raw predictability across portfolios (R2
i,os,t, in blue). The details of the methodology are outlined

in Section 4.2. The light blue area represents the gap between the minimum and the maximum
values taken by the different portfolio-raw predictability series (R2

i,os,t). The metric used is the

out-of-sample R2, also detailed in Section 4.2, that can take negative values. The grey vertical
bands figure the NBER US recession dates.

We observe that pooling the different R2
i,os,t results in a time series that is significantly

more correlated with R2
os,t than the individual micro-predictability series. Both of these

findings are in line with the implications of H3. In this setting, micro-predictability is
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affected upward by idiosyncratic inefficiencies (αi(Xt)) and downward by idiosyncratic

news (εi,t+1). As these two components are centered around 0, they do not translate

to macro-returns. Accordingly, macro-predictability should be less volatile than micro-

predictability, whereas the average of the micro-predictability series should mimic the

evolution of the macro-predictability series. We find both of these results on Figure 2

and 3.

Eventually, the results outlined in this section, regarding the means and the variances of

the macro- and micro-predictability series, as well as regarding the strong correlation of

R2
i,os,t with respect to R2

os,t, are detailed in Figure 7 of Appendix A.4 6. Moreover, in

Appendix A.5, we take into account the uncertainty regarding the coefficient estimates

by first fitting ARMA(1,1) processes on the R2
i,os,t and R2

os,t, and then by performing 500

bootstrap simulations. The Figure 8 of Appendix A.5 depicts the different coefficients

along with their standard errors. We can thus notice that the mean of R2
os,t is similar

to the means of R2
i,os,t, while the standard deviation of R2

os,t appears significantly lower

than the standard deviations of R2
i,os,t.

5.2 Alpha- and Beta-Predictability

5.2.1 Building Alpha- and Beta-Predictability

The findings highlighted with Figure 2 and 3 enabled to discard the first two hypotheses:

Samuelson’s and Cochrane’s views. On the reverse, the third view, H3, seems to fit well

with the behaviours of the micro- and macro- raw predictability series outlined above.

However, H3 has also implications regarding the time variation of macro-predictability.

Since macro-predictability is influenced by alpha- and beta-predictability, it should be

significant both in times of elevated market inefficiencies and during economic downturns.

6Note that all the aforementioned results concerning R2
i,os,t and R2

os,t cannot be explained by the
variances of the input returns ri,t+1 and rt+1. We plot on Figure 9 and 10 of Appendix A.4 the standard
deviations of stock returns against either the level or the variance of their corresponding raw predictability
indices. For both graphs the relationships between these variables appear weak at best.
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As such, Figures 2 and 3 do not help disentangling these two potential factors, since

drops in alpha-predictability may counterbalance rises in beta-predictability (and the

reverse).

We therefore attempt in this section to better understand the sources of variation of

macro-predictability over time. To do so, we take as a starting point the individual port-

folio returns (ri,t+1) that we use to estimate the individual series of alpha-predictability

(R2
i,α,t) and beta-predictability (R2

i,β,t) with the methodology detailed in Section 4.3.

Eventually, we represent on Figures 4 and 5 the behaviours of, respectively, the pooled

series R2
i,α,t ≡ I−1

∑
1≤i≤I R

2
i,α,t and R2

i,β,t ≡ I−1
∑

1≤i≤I R
2
i,β,t

7.

We draw several conclusions from these figures. First remember that, in line with H3,

we expect R2
i,α,t to rise in periods of market exuberance, and R2

i,β,t to increase during

recessions. In order to better visualize their time variations, we plot along R2
i,α,t and

R2
i,β,t the opposite of the “Excess CAPE yield” (ECY, built as the inverse of the CAPE

ratio minus a risk-free rate) and the Unemployment rate. The former has been advocated

to be a good metric of market effervescence8 (Shiller et al. (2020)), while the latter stands

as an intuitive variable to spot changes in the business cycle. Regarding the behaviour of

R2
i,α,t on Figure 4, the series appears positively correlated with the opposite of the US

ECY. As expected, R2
i,α,t is relatively high in periods of market booms. These periods

include notably the “Kennedy-Johnson peak” (Shiller (2015)) around 1966, the dotcom

bubble of the late 90s and finally the period preceding the Great Financial Crisis of 2007.

7On Figures 4 and 5 we center the R2 metrics around the mid-point of their estimation periods.

In other words, whereas in Section 4.2 we had R2
os,m,t = 1 −

∑t−1
i=t−n

(ri+1−rmi+1)2

(ri+1−r̄i)2
, here we consider

that R2
os,m,t = 1 −

∑t−1+n/2

i=t−n/2
(ri+1−rmi+1)2

(ri+1−r̄i)2
, with n an even number. We do this as, for the out-of-sample

predictive algorithm, we need all the previous forecasting errors to perform our model selection. However,
for interpretative purposes, building the R2 metrics with only past data will tend to artificially shift the
series with respect to the other external variables.

8Adjusting likewise the CAPE ratio enables to take into account the role of the fall in risk-free rates
for stock valuations in the recent years. In line with Chatelais and Stalla-Bourdillon (2020) we multiply
the ECY by -1 throughout the rest of this paper, so that an increase in this metric reflects stronger stock
valuations (with respect to bonds).
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Figure 4: R2
i,α,t and US ECY, over time

On the graph are represented the average across portfolios of the alpha-predictability series
(R2

i,α,t, in red) and the US Excess CAPE yield multiplied by -1 (in blue). These monthly series
have been standardized to fit in the same graph, and, for visual purposes, they have been smoothed
over a 3-month period. Raw series of R2

i,α,t are yet available in the Figure 11 of Appendix A.6.

The red area figures the cross-sectional dispersion around R2
i,α,t (+/-1 standard deviation). The

metric used is the out-of-sample alpha-predictability R2
i,α,t, detailed in Section 4.3, that can take

negative values. The grey vertical bands figure the NBER US recession dates.

As for R2
i,β,t, the series appears also positively associated with the US Unemployment

rate. It rises during economic downturns, for example throughout the 1960-61 recession,

in the neighbouring of the 1973- oil shock, along the Great Financial Crisis or during

the recent Covid crisis9.

Second, the red areas surrounding R2
i,α,t and R2

i,β,t figure the cross-sectional dispersion

of alpha- and beta-predictability across portfolios. We thus notice that the series of R2
i,α,t

9Note that, following the Covid-shock, all predictability appears to stem from the beta-predictability.
This finding is in line with other recent studies, such as Gormsen and Koijen (2020). This latter argue
that the apparent disconnection between the macroeconomic situations and the US stock market wasn’t
due to irrational investors’ behaviours, but could be rationalized through the fall in long-term sovereign
rates.
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Figure 5: R2
i,β,t and US Unemployment rate, over time

On the graph are represented the average across portfolios of the beta-predictability series (R2
i,β,t,

in red) and the US Unemployment rate (in blue). These monthly series have been standardized to
fit in the same graph, and, for visual purposes, they have been smoothed over a 3-month period.
Raw series of R2

i,β,t are yet available in the Figure 12 of Appendix A.6. The red area figures

the cross-sectional dispersion around R2
i,β,t (+/-1 standard deviation). The metric used is the

out-of-sample beta-predictability R2
i,β,t, detailed in Section 4.3, that can take negative values. The

grey vertical bands figure the NBER US recession dates.

are way more dispersed than the series of R2
i,β,t. This result is quite intuitive as well: in

line with H3, alpha-predictability depends on the importance of both idiosyncratic and

aggregate factors, αi(Xt) and α(Xt). On the reverse, beta-predictability should reflect

a single phenomenon, the predictability of ft+1. Therefore we should indeed observe

more dispersion among the different R2
i,α,t than for the different R2

i,β,t.

These two findings appear in accordance with the implications of H3 regarding either

the timing of alpha-predictability and beta-predictability peaks, or the dispersion among

portoflio returns for these series. However, to better assess the drivers of R2
i,α,t and

R2
i,β,t beyond pure visual examination, we turn to regression analysis in the next sec-
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tion.

5.2.2 Interpreting Alpha- and Beta-Predictability

According to the different implications of H3, three variable types may affect R2
i,α,t and

R2
i,β,t. First, R2

i,α,t is supposed to increase during periods of either elevated market

frictions, or of irrational exuberance. Conversely, following Henkel et al. (2011), R2
i,β,t

should especially be high during economic downturns. Thus, let j ∈ {α, β}, we look at

regressions of the form:

R2
i,j,t = cj + γ ′IE,jXIE,j,t + γ ′FC,jXFC,t + γ ′RA,jXRA,t + εj,t (12)

With XIE,t spotting periods of irrational exuberance (valuation ratios or speculative

bubble indicators), XFC,t indicating financial constraints which prevent arbitrageurs

from exploiting potential mispricings (stock return volatility, financial intermediary

leverage) and XRA,t following closely the business cycles (unemployment level).

H3 has several implications for the signs of the different coefficients. If we assume that

increases in XIE,t, XFC,t and XRA,t reflect an increase in market effervescence, an

aggravation of financial constraints and a strengthening of economic activity, respec-

tively, we would expect, in line with Section 3, that γIE,α > 0, γFC,α > 0 and that

γRA,β < 0. Furthemore, we would also expect that a tightening of financial conditions

leaves beta-predictability unaffected as the latter shouldn’t be influenced by market

frictions. Eventually, we remain agnostic regarding the link between economic expan-

sions and alpha-predictability. Alpha-predictability can either be positively influenced

by the former (if an improvement in macroeconomic conditions triggers investor’s exces-

sive enthusiasm) or negatively (if noise traders are especially present during recessions,

Veldkamp (2005)). Therefore, we expect γFC,β to be non-significant while we do not

form any expectation regarding the sign of γRA,α.
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To test these implications on the US stock market, we first use for XIE,t two different

valuation ratios: the Excess CAPE yield, already described in Section 5.2.1, and the

S&P 500 Price Earning Ratio. Additionally, we also look at survey variables to gauge

market exuberance in the form of the U.S. One-Year Confidence Index of Yale university.

Second, we consider for XFC,t three different metrics to reflect funding constraints. The

first one is stock return volatility, the second one the Baa-Aaa corporate bond spread

and the third one the seasonally adjusted changes in U.S. broker-dealer leverage (LFt,

Adrian et al. (2014)). Following Farmer et al. (2021), we take LFt as proxy of funding

constraints, since lower leverage is associated with a reduced availability of arbitrage

capital. Eventually, for the business cycles variables, XRA,t, we take as a main proxy

the US unemployment rate, but we also use the Consumer Sentiment Index from the

University of Michigan in the robustness checks of Section 6. These different covariates,

as well as their originating sources are more precisely detailed in Table 5 of Appendix

A.2.

The regression results are presented in Table 1 and Table 2. For the alpha-predictability,

we notice in Table 1 that whatever the proxy for XIE,t, the associated coefficient γIE,α is

significantly positive in the nine specifications outlined here. This finding suggests that

alpha-predictability is particularly at play in times of elevated market effervescence. As

for the business cycles variables, we observe that the corresponding slopes γRA,α are al-

ways significant and positive. This last result indicates that alpha-predictability tends to

be especially high in times of bullish stock market combined with sound macroeconomic

conditions. Conversely, the mechanism outlined by Veldkamp (2005) does not seem to

play any role here. Eventually, for all the different regressions, the coefficients γFC,α are

either non-significant or (significantly) positive. Thus, although financial constraints’

coefficients have most of the time the expected sign, these variables appear to have only

a secondary importance in the drivers of alpha-predictability.

24



Table 1: Regression results for the Alpha-Predictability

Dependent variable:

Alpha-predictability: R2
i,α,t

(1) (2) (3) (4) (5) (6) (7) (8) (9)

−ecyt 0.240∗∗∗ 0.443∗∗∗ 0.243∗∗∗

(0.068) (0.130) (0.069)

pet 0.001∗∗∗ 0.001∗∗∗ 0.001∗∗∗

(0.0002) (0.0001) (0.0002)

Y alet 0.002∗∗∗ 0.002∗∗∗ 0.002∗∗∗

(0.0004) (0.0003) (0.0004)

−unempt 0.007∗∗∗ 0.006∗∗ 0.007∗∗∗ 0.008∗∗∗ 0.010∗∗∗ 0.007∗∗∗ 0.013∗∗∗ 0.015∗∗∗ 0.014∗∗∗

(0.002) (0.003) (0.002) (0.002) (0.002) (0.002) (0.004) (0.004) (0.004)

vol1,t −0.00001 −0.001 0.003∗∗∗

(0.001) (0.001) (0.001)

−LFt 0.0001 −0.00002 0.001∗

(0.0002) (0.0002) (0.001)

Baat 0.003 −0.004 0.021∗∗∗

(0.008) (0.008) (0.007)

Const. 0.032∗∗∗ 0.032∗∗∗ 0.032∗∗∗ 0.018∗ 0.033∗∗∗ 0.017∗ −0.101∗∗∗ −0.050∗ −0.113∗∗∗

(0.010) (0.012) (0.010) (0.010) (0.011) (0.010) (0.033) (0.027) (0.034)

Obs. 856 597 856 856 597 856 214 214 214
R2 0.175 0.265 0.175 0.166 0.250 0.166 0.363 0.427 0.380
Adj. R2 0.172 0.261 0.172 0.163 0.246 0.163 0.354 0.418 0.371

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

On the table are represented the different regression results with R2
i,α,t as a predicted variable.

t−statistics have been computed using Newey-West standard errors. Variables are rearranged so
that an increase in XIE,t, XFC,t and XRA,t reflects, respectively, a surge in market effervescence,
an aggravation of financial constraints and a strengthening of economic activity.
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Regarding the beta-predictability, we remark in Table 2 that, as expected, a decrease

in economic activity is related to an increase in beta-predictability (γRA,β < 0) for all

nine regressions, in line with Henkel et al. (2011). Similarly, beta-predictability seems to

coincide with bearish financial markets, as the coefficients γIE,β are significantly negative

irrespective of the chosen metric. Eventually, again as expected, financial constraints

do not seem to play a role in determining the level of beta-predictability, as coefficients

γFC,β are non-significant across all specifications of Table 2.

The results of Tables 1 and 2 bring new additional evidence in favor of H3: all the differ-

ent coefficients exhibited the expected signs according to this hypothesis. The findings

highlighted in this section as well as in Section 5.1 corroborate the two main ideas of this

paper: First, that there is indeed a diversification effect of efficient and inefficient indi-

vidual factors when we compare micro-returns to macro-returns. Second, that regarding

more specifically the drivers of macro-predictability, both types of return predictability,

alpha- and beta-predictability, seem at play at the same time in our dataset. This last

finding contrasts with the return predictability literature, where previous studies tended

to oppose these two mechanisms.

6 Robustness checks

We provide here different robustness checks for the results outlined in Section 5.2.

First, to build the alpha- and the beta-predictability indices, we relied on the 3 factor-

model of Fama and French (1993) as proxies for the risk factors ft+1, namely the excess

return on the market, the size factor and the value factor. On Figures 11 and 12 of

Appendix A.6, we also plotted the resulting R2
i,α,t and R2

i,β,t whether we rely on the

1-factor (in green), the 3-factor (in red) or the 5-factor (in blue) Fama-French models 10.

10The two last factors “Robust Minus Weak” and “Conservative Minus Aggressive” are also extracted
from Kenneth French website. Due to their limited availability, the R2

i,α,t and R2
i,β,t for the 5-factor

model start later than for the 1-factor or 3-factor models.
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Table 2: Regression results for the Beta-Predictability

Dependent variable:

Beta-predictability: R2
i,β,t

(1) (2) (3) (4) (5) (6) (7) (8) (9)

−ecyt −0.582∗∗∗ −0.214∗ −0.598∗∗∗

(0.101) (0.125) (0.102)

pet −0.001∗∗∗ −0.0004∗∗∗ −0.001∗∗∗

(0.0003) (0.0001) (0.0003)

Y alet −0.002∗∗∗ −0.002∗∗∗ −0.002∗∗∗

(0.0005) (0.0004) (0.0005)

−unempt −0.005∗∗∗ −0.011∗∗∗ −0.007∗∗∗ −0.008∗∗∗ −0.013∗∗∗ −0.008∗∗∗ −0.014∗∗∗ −0.017∗∗∗ −0.015∗∗∗

(0.002) (0.002) (0.002) (0.002) (0.002) (0.003) (0.003) (0.003) (0.003)

vol1,t −0.0002 0.001 −0.001
(0.001) (0.001) (0.001)

−LFt −0.0002 −0.0001 −0.001
(0.0002) (0.0002) (0.001)

Baat −0.013 −0.0003 −0.006
(0.008) (0.008) (0.009)

Const. −0.067∗∗∗ −0.094∗∗∗ −0.067∗∗∗ −0.042∗∗∗ −0.093∗∗∗ −0.042∗∗∗ 0.073∗ 0.026 0.076∗∗

(0.011) (0.012) (0.011) (0.016) (0.011) (0.016) (0.038) (0.032) (0.038)

Ob. 856 597 856 856 597 856 214 214 214
R2 0.234 0.302 0.242 0.109 0.305 0.108 0.395 0.468 0.395
Adj. R2 0.231 0.298 0.240 0.106 0.301 0.105 0.386 0.460 0.387

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

On the table are represented the different regression results with R2
i,β,t as a predicted variable.

t−statistics have been computed using Newey-West standard errors. Variables are rearranged so
that an increase in XIE,t, XFC,t and XRA,t reflects, respectively, a surge in market effervescence,
an aggravation of financial constraints and a strengthening of economic activity

27



We notice on both figures that, despite some discrepancies for the 1-factor model indices,

the different metrics behave in a very similar way. These similarities are noticeable

whether we look at the pooled series (R2
i,α,t and R2

i,β,t) or at the dispersion around the

latter (the shaded areas on Figures 11 and 12).

Second, we provide on Table 6 of Appendix A.7 additional regression results in line with

our analysis of Section 5.2. We use as an alternative business cycle variable the Consumer

Sentiment Index from the University of Michigan, and as a supplementary financial

friction proxy a different metric of stock market volatility (computed by estimating a

GARCH(1,1) on daily stock returns instead of taking the monthly average of squared

returns). We thus notice in Table 6 that these modifications leave the main results

unchanged: we still have γIE,α and γRA,β significantly positive and negative, γFC,α,

γFC,β non-significant, and γRA,α positive (although not significantly).

7 Conclusion

Based on US postwar data, we manage in this paper to discriminate between three oppo-

site hypotheses regarding the behaviours of micro- and macro-stock return predictability.

Overall, by looking at raw predictability metrics, we find that our results are consistent

with a model (H3) that lies in-between Samuelson’s and Cochrane’s views (H1 and H2).

Indeed, micro-predictability series do not appear to be structurally higher or lower than

macro-predictability indices, but tend to “bounce” around the latter. Furthermore, pool-

ing micro-predictability series across portfolios yields an index that is significantly more

correlated with the macro-predictability metric. All these observations corroborate an

hypothesis where individual returns are mostly affected by idiosyncratic efficient and

inefficient components, but also by common factors. If the former are diversified away

at the index-level, we should indeed observe more variability in micro-predictability se-

ries, but also an averaged micro-predictability index that mimic the macro-predictability
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series.

Additionally, by extending over time the framework by Rapach et al. (2011), we are

able to disentangle the two sources of return predictability, the alpha- and the beta-

predictability. Here again, our results underpin an intermediate view where return pre-

dictability is both affected by these two mechanisms. As a matter of fact, our two

estimated indices match the expected theoretical patterns: alpha-predictability rises in

period of market effervescence whereas beta-predictability increases during downturns.

This last finding enables to reconcile two opposite blocks of the literature: whereas pre-

vious papers tend to stress a specific source of predictability (Farmer et al. (2021), Dangl

and Halling (2012)), our results suggest that the two phenomenons are at play in our

sample.

Eventually, we argue that our estimated alpha-predictability index (R2
i,α,t) constitutes a

theoretically based and easily updatable series to assess periods of irrational exuberance

in real time. Along with other metrics of speculative bubbles (Shiller et al. (2020),

Blot et al. (2018)), it can be used for financial stability purposes to gauge potential

overvaluations on the stock market.
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A Appendix

A.1 List of estimated Models

With rt+1 the predicted variable (index or portfolio excess returns) and rft+1 the model-

forecast.

Table 3: Estimated Models

Name Model description References

Model 1

Simple Exponential Smoothing

• pt+1 = αpt + (1− α)rt

• With p1 = r1

Timmermann (2008)

Model 2

Double Exponential Smoothing

• pt+1 = α(pt + λt−1) + (1− α)rt

• αt = β(pt+1 − pt) + (1− β)λt−1

• With p1 = 0, f2 = r2 and λ2 = r2 − r1

Timmermann (2008)

Model 3

Autoregressive Model (BIC)

• rt+1 = α+ β(L)rt + ut

• Number of lags chosen with the Bayesian Information

• Criterion

Timmermann (2008)

Model 4

Autoregressive Model (AIC)

• rt+1 = α+ β(L)rt + ut

• Number of lags chosen with the Aikake Information

• Criterion

Elliott and Timmermann (2013)

Model 5

Smooth Transition Autoregressive Model 1

• rt+1 = θ′0ηtdt + θ′1ηt + ut+1

• dt = 1/(1 + exp(γ0 + γ1(rt − rt−6))

• With ηt = (1, rt)
′

Timmermann (2008)
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Table 3: Estimated Models

Name Model description References

Model 6

Smooth Transition Autoregressive Model 2

• rt+1 = θ′0ηtdt + θ′1ηt + ut+1

• dt = 1/(1 + exp(γ0 + γ1rt−3)

• With ηt = (1, rt)
′

Timmermann (2008)

Model 7

Neural net model 1

• rt+1 = θ0 +
∑n
i=1 θig(β′iηt) + ut+1

• With g the logistic function, ηt = (1, rt, rt−1, rt−2)′

• and n = 2

Timmermann (2008)

Model 8

Neural net model 2

• rt+1 = θ0 +
∑n1

i=1 θig(
∑n2

j=1 βjg(α′jηt)) + ut+1

• With g the logistic function, ηt = (1, rt, rt−1, rt−2)′,

• n1 = 2 and n2 = 1

Timmermann (2008)

Model 9 to

Model 18

Univariate regressions

• rt+1 = θ0 + θ1xt + ut+1

• With xt (univariate) exogenous regressors from

• the list detailed in Table 4

Welch and Goyal (2008)

Model 19

“Kitchen sink” regression

• rt+1 = θ0 + θ′1Xt + ut+1

• With Xt the exogenous regressors from

• the list detailed in Table 4

Welch and Goyal (2008)

Model 20

“Model selection” from Goyal and Welch (2008)

• With all the potential combinations Xi,t from

• the list detailed in Table 4, we evaluate:

• rt+1 = θi,0 + θ′i,1Xi,t + ui,t+1

• At each point in time, we choose the model with

• the smallest out-of-sample R2

Welch and Goyal (2008)
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Table 3: Estimated Models

Name Model description References

Model 21

Factor model from Kelly and Pruitt (2013)

• Only for aggregate return predictions

• With bmit the book-to-market ratio of portfolio i

• and Ft the estimated factor, we run the following

• three regressions:

• bmi,t = θi,0 + θi,1rt+1 + ei,t (time series)

• bmi,t = ct + Ftθ̂i,1 + ui,t (cross section)

• rt+1 = γ1 + γ2F̂t + εi,t+1 (time series)

Kelly and Pruitt (2013)

Model 22

Forecast averaging - equally weighted

• Let pj,t+1 the forecasts from the J precedent

• models, we use a simple equally-weighted

• forecast averaging of the form:

• pt+1 =
∑J
j=1 pj,t+1

Timmermann (2008)

Model 23

Model selection - in-sample

• From the J precedent models (apart from Model 22),

• we evaluate the in-sample RMSE for each single model

• and take as a prediction the forecast of the model

• with the lowest RMSE.

Timmermann (2008)
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A.2 Datasets

Table 4: External regressors used in Model 9 to 20 in Table 3

Variable Description Sources

tmst

Term spread
• 10 Year Treasury rate minus the 3-Month
• T-Bill rate

Amit Goyal website (before
January 2020), FRED (after
January 2020)

cape1,t

Cyclically-adjusted PE (CAPE) ratio 1
• Real S&P 500 Prices divided by the 10-year
• moving average of the corresponding real Earnings

Robert Shiller website

cape2,t

Cyclically-adjusted PE (CAPE) ratio 2
• CAPE ratio with scaled Earnings (i.e. adjusted
• to account for changes in corporate payout policy)

Robert Shiller website

pet

PE ratio
• Nominal S&P 500 prices divided by corresponding
• nominal Earnings

Robert Shiller website

bmt

Book-to-Market ratio
• Median Book-to-Market ratio of Fama-French
• 100 portfolios

Kenneth French website

ecyt

Excess CAPE yield
• Inverse of cape1,t minus the 10-year real
• sovereign rate

Robert Shiller website

dpt

Dividend-Price ratio
• Log of S&P 500 nominal dividends minus log
• of S&P 500 contemporaneous nominal dividends
• (as in Goyal and Welch (2008))

Robert Shiller website

dyt

Dividend Yield
• Log of S&P 500 nominal dividends minus log
• of S&P 500 previous nominal dividends
• (as in Goyal and Welch (2008))

Robert Shiller website

vol1,t

Return Volatility 1
• Monthly average of daily squared aggregate
• returns, as in Goyal and Welch (2008)

Kenneth French website

vol2,t

Return Volatility 2
• Monthly average of daily aggregate return
• volatility estimated with a GARCH(1,1)

Kenneth French website

indext
Index level

• S&P 500 index level
Robert Shiller website

IPt
Industrial Production

• US Industrial Production
FRED

Above listed variables are available over the all estimation period (September 1945-October 2020).
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Table 5: Additional external regressors used in Sections 5.2 and 6

Variable Description Sources

Michigant

Consumer Sentiment
• Consumer Sentiment Index from the University of
• Michigan

FRED

unempt
Unemployment rate

• US Unemployment rate
FRED

Baat

Baa-Aaa spread
• Moody’s Seasoned Baa Corporate Bond Yield minus
• Aaa Corporate Bond Yield

FRED

LFt

U.S. broker-dealer leverage
• Seasonally adjusted changes in U.S. broker-dealer
• leverage (Adrian, Etula and Muir (2014))

Tyler Muir website

Y alet

Confidence Index of Yale University
• Seasonally adjusted changes in U.S. broker-dealer
• leverage (Adrian, Etula and Muir (2014))

Yale University website

Various variables also used in the regressions of Section 5.2 and 6 are already detailled in Table
A.2: ecyt, pet, vol1,t and vol2,t.
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A.3 Raw Predictability series: individual graphs

Figure 6: Individual Micro- and Macro-Raw Predictability series, over time

On the different graphs are represented the macro- (R2
os,t, in red) and micro- (R2

i,os,t, in blue)
raw predictability indices according to the methodology outlined in Section 4.2. The metric used
is the out-of-sample R2, also detailed in Section 4.2, that can take negative values. The grey
vertical bands figure the NBER US recession dates.
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A.4 Moments of the raw return predictability series

Figure 7: Distribution of Micro-Raw Predictability Statistics

On the different graphs are represented the distributions (in blue) of different statistics of the
I series R2

i,os,t: their means, their standard deviations and their correlations with respect to

R2
os,t. The grey points represent the outliers of the aforementioned distributions. The coloured

point represent the corresponding statistics either for R2
os,t or for R2

i,os,t. We thus notice, along
Section 5.1: first that the mean of R2

os,t is in line with the means of the different R2
i,os,t, second

that the standard deviation of R2
os,t stands below the first quartile of R2

i,os,t, eventually that

pooling the different series R2
i,os,t into R2

i,os,t sharply increases the correlation with R2
os,t.The

metric used is the out-of-sample R2, also detailed in Section 4.2, that can take negative values.
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A.5 Standard errors, mean and standard deviations of raw predictabil-

ity series

To assess the difference in means and standard deviations of R2
os,t with respect to R2

i,os,t,

we fit an ARMA(1,1) on each series. More precisely, with Yt being either R2
os,t or R2

i,os,t,

we estimate:

Yt = c+ γYt−1 + θεt−1 + εt and E(ε2t ) = σ2ε (13)

For each series, we then compute their estimated unconditional means m as:

m̂ =
ĉ

1− γ̂
(14)

And their variances σ2 as:

σ̂2 =
(1 + 2γ̂θ̂ + γ̂2)σ̂ε

2

1− γ̂2
(15)

Standard errors for these two estimates are obtained with 500 bootstrap simulations.

Mean and standard deviation for R2
os,t are depicted in red in Figure 8, and in blue for

the 25 R2
i,os,t. Black error bands figure +/- 1 standard error confidence intervals along

the estimates. We thus notice on Figure 8, in line with Section 5.1, that, although

the means of R2
os,t and R2

i,os,t appear indistinguishable from each other, the standard

deviation of R2
os,t is significantly lower than for R2

i,os,t.
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Figure 8: Mean and standard deviations of raw predictability series: confidence intervals

On the graph are represented the unconditional means (upper panel) and the standard deviations
(lower panel) of R2

os,t (in red) R2
i,os,t (in blue). The coefficients are obtained by fitting the

series with ARMA(1,1) processes, as described in Equations 14 and 15. The standard errors are
obtained with 500 bootstrap simulations. Black error bands figure +/- 1 standard error confidence
intervals.
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Figure 9: Raw Predictability levels vs. Returns standard deviations

On the scatter plot are represented, for ri,t+1 (in blue) and rt+1 (in red), the standard deviations
of the returns series on the x-axis, and the mean of their raw predictability, R2

i,os,t or R2
os,t, on

the y-axis. The metric used for the y-axis is the out-of-sample R2, detailed in Section 4.2, that
can take negative values.
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Figure 10: Raw Predictability standard deviations vs. Returns standard deviations

On the scatter plot are represented, for ri,t+1 (in blue) and rt+1 (in red), the standard deviations
of the returns series on the x-axis, and the standard deviations of their raw predictability, R2

i,os,t

or R2
os,t, on the y-axis. The metric used for the y-axis is the out-of-sample R2, detailed in Section

4.2, that can take negative values.
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A.6 Robustness checks: alternative risk factors

Figure 11: R2
i,α,t with different Factor Specifications

On the graph are represented the average across portfolios of the alpha-predictability series
(R2

i,α,t) computed using the 1-factor (in green), the 3-factor (in red) or the 5-factor (in blue)
Fama-French models. The coloured areas figure the corresponding cross-sectional dispersion
around the different R2

i,α,t (+/-0.5 standard deviation). The metric used is the out-of-sample
alpha-predictability R2

i,α,t, detailed in Section 4.3, that can take negative values. The grey vertical
bands figure the NBER US recession dates.
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Figure 12: R2
i,β,t with different Factor Specifications

On the graph are represented the average across portfolios of the beta-predictability series (R2
i,α,t)

computed using the 1-factor (in green), the 3-factor (in red) or the 5-factor (in blue) Fama-
French models. The coloured areas figure the corresponding cross-sectional dispersion around
the different R2

i,β,t (+/-0.5 standard deviation). The metric used is the out-of-sample beta-
predictability R2

i,β,t, detailed in Section 4.3, that can take negative values. The grey vertical
bands figure the NBER US recession dates.
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A.7 Robustness checks: regression results

Table 6: Additional Regression Results for the Alpha- and Beta-Predictability

Dependent variable:

Alpha-pred.: R2
i,α,t Beta-pred.: R2

i,β,t

(1) (2) (1) (2)

pet 0.001∗∗ 0.001∗∗∗ −0.001∗∗∗ −0.001∗∗∗

(0.0003) (0.0002) (0.0002) (0.0003)

Michigant 0.0004 −0.001∗∗∗

(0.0003) (0.0002)

−unempt 0.008∗∗∗ −0.008∗∗∗

(0.002) (0.002)

volt −0.0004 0.0004
(0.001) (0.001)

vol2,t −0.002 0.002
(0.002) (0.001)

Const. −0.074∗∗∗ 0.017∗ 0.063∗∗∗ −0.041∗∗∗

(0.026) (0.010) (0.022) (0.016)

Obs. 496 856 496 856
R2 0.077 0.168 0.086 0.107
Adj. R2 0.071 0.165 0.086 0.107

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

On the table are represented the different regression results with R2
i,α,t and R2

i,β,t as a predicted
variables. t−statistics have been computed using Newey-West standard errors. Variables are
rearranged so that an increase in XIE,t, XFC,t and XRA,t reflects, respectively, a surge in
market effervescence, an aggravation of financial constraints and a strengthening of economic
activity
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